离散型随机变量的分布列(第2课时)练习答案

- 1. 答案 C
- 2. 答案 A
- 3. 答案 D
- 4. 答案 C

解析 如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问题,故所求概率为 $P=\frac{\text{C}_3^3\text{C}_4^4}{\text{C}_3^3}=\frac{12}{35}$.

5. 答案 D

解析 6 名选手依次演讲有 A8种方法,选手甲不在第一个也不在最后一个演讲的安排方法有 AA5,所以 6 名选手依次演讲,则选手甲不在第一个也不在最后一个演讲的概率为 $\frac{4A}{A}$ 5 = $\frac{2}{3}$ 5.

- 6. 答案 $\frac{13}{35}$
- 7. 答案 $\frac{3}{5}$
- 8.答案

η	0	1	2
P	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

解析 : η 的所有可能值为 0,1,2.

$$P(\eta=0) = \frac{\text{C}^{1}\text{C}^{1}}{\text{C}^{1}_{2}\text{C}^{1}_{2}} = \frac{1}{4}, \ P(\eta=1) = \frac{\text{C}^{1}\text{C}^{1}\times2}{\text{C}^{1}_{2}\text{C}^{1}_{2}} = \frac{1}{2},$$

$$P(\eta = 2) = \frac{C|C|}{C_2^1 C_2^1} = \frac{1}{4}.$$

:η的分布列为

η	0	1	2
P	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$