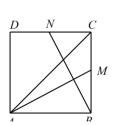
平面向量数乘运算的坐标表示拓展作业

1. 如图,正方形 ABCD 中,M,N 分别是 BC,CD 的中点,若 $\overrightarrow{AC} = \lambda \overrightarrow{AM} + \mu \overrightarrow{BN}$,则 $\lambda + \mu = \underline{\hspace{1cm}}$.

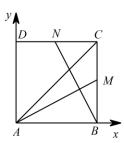


8. 【解析】以 AB, AD 为坐标轴建立平面直角坐标系,如图:

设正方形边长为 1,则 $\overrightarrow{AM} = \left(1, \frac{1}{2}\right)$, $\overrightarrow{BN} = \left(-\frac{1}{2}, 1\right)$, $\overrightarrow{AC} = (1,1)$, 因为 $\overrightarrow{AC} = \lambda \overrightarrow{AM} + \mu \overrightarrow{BN}$,

所以
$$\begin{cases} \lambda - \frac{1}{2}\mu = 1, \\ \frac{1}{2}\lambda + \mu = 1, \end{cases}$$
 解得
$$\begin{cases} \lambda = \frac{6}{5}, \\ \mu = \frac{2}{5}, \end{cases}$$
 所以 $\lambda + \mu = \frac{8}{5}$.

2. 若三点 A(2,2), B(a,0), $C(0,b)(ab \neq 0)$ 共线,则 $\frac{1}{a} + \frac{1}{b}$ 的值为_____.



 $\frac{1}{2}$ 【解析】 $\overrightarrow{AB} = (a-2,-2)$, $\overrightarrow{AC} = (-2,b-2)$,依题意,有 (a-2)(b-2)-4=0,即 ab-2a-2b=0,所以 $\frac{1}{a}+\frac{1}{b}=\frac{1}{2}$.

3. 已知 O 为坐标原点,向量 $\overrightarrow{OA}=(2,3)$, $\overrightarrow{OB}=(4,-1)$,且 $\overrightarrow{AP}=3\overrightarrow{PB}$,则 $\left|\overrightarrow{OP}\right|=$ ______.

 $\frac{7}{2}$ 【解析】在平面直角坐标系 xOy 中,设 P(x,y),由题意可得 A,B 两点的坐标分别为 (2,3),(4,-1),

由 $\overrightarrow{AP} = 3\overrightarrow{PB}$ 可得 (x-2,y-3) = 3(4-x,-1-y),根据向量相等的概念得 $\begin{cases} x-2 = 12-3x, \\ y-3 = -3y-3, \end{cases}$

解得
$$\begin{cases} x = \frac{7}{2}, & \text{故 } |\overrightarrow{OP}| = \frac{7}{2}. \\ y = 0, & \end{cases}$$

4. 设两个向量 $\vec{a} = (\lambda + 2, \lambda^2 - \cos^2 \alpha)$ 和 $\vec{b} = (m, \frac{m}{2} + \sin \alpha)$,其中 λ ,m, α 为实数.若 $\vec{a} = 2\vec{b}$,求 $\frac{\lambda}{m}$ 的取值范围.

解: 由 $\vec{a}=2\vec{b}$,得 $\begin{cases} \lambda+2=2m,\\ \lambda^2-\cos^2\alpha=m+2\sin\alpha, \end{cases}$ 消去 λ 并整理,得 $(2m-2)^2-m=\cos^2\alpha+2\sin\alpha,$

即 $4m^2 - 9m + 4 = -\sin^2\alpha + 2\sin\alpha + 1 = -(\sin\alpha - 1)^2 + 2$. 由 $-1 \le \sin\alpha \le 1$,得 $-2 \le \sin\alpha \le 1$,得 $-2 \le \sin\alpha \le 1$,

 $-(\sin \alpha - 1)^2 + 2 \le 2$,从而 $-2 \le 4m^2 - 9m + 4 \le 2$,解得 $\frac{1}{4} \le m \le 2$,则 $-6 \le 2 - \frac{2}{m} \le 1$.

由 $\frac{\lambda}{m} = \frac{2m-2}{m} = 2 - \frac{2}{m}$,得 $-6 \le \frac{\lambda}{m} \le 1$.