函数的性质进一步研究第 12 课时--课后作业答案

1.讨论函数 $f(x) = e^x - 2ax$, $a \in R$ 的单调性.

解:函数 f(x) 的定义域为($-\infty$, $+\infty$),且 $f'(x) = e^x - 2a$ 。

(1)当 $a \le 0$ 时,f'(x) > 0,f(x)在(- ∞ , + ∞)上是单调递增;

(2)当a > 0时,令 $f'(x) = e^x - 2a = 0$,得 $x = \ln 2a$,列表分析如下

X	$(-\infty, \ln 2a)$	$\ln 2a$	$(\ln 2a, +\infty)$
f'(x)	_	0	+
f(x)	\		1

在 $(\ln 2a, +\infty)$ 上, f'(x) > 0,所以 f(x) 在 $(\ln 2a, +\infty)$ 上单调递增,

在 $(-\infty, \ln 2a)$ 上, f'(x) < 0, 所以在 $(-\infty, \ln 2a)$ 上单调递减。

综上所述: 当 $a \le 0$ 时, 递增区间: $(-\infty, +\infty)$, 无递减区间;

当a > 0时,递增区间: $(\ln 2a, +\infty)$,递减区间 $(-\infty, \ln 2a)$.

2. 已知函数 $f(x) = a \ln x - \frac{1}{x} (a \in \mathbf{R})$, 求函数 f(x) 在 $x \in (0,1)$ 的单调区间

解: 定义域(0,1),
$$f'(x) = a \cdot \frac{1}{x} + \frac{1}{x^2} = \frac{ax+1}{x^2}$$

(1) 若 $a \ge 0$ 时, f'(x) > 0, f(x)在(0,1)上是单调递增;

①若 $0 < -\frac{1}{a} < 1$ 即 a < -1 时,列表分析如下:

х	$(0, -\frac{1}{a})$	$-\frac{1}{a}$	$(-\frac{1}{a},1)$
f'(x)	+	0	-
f(x)	1	极大值	<u></u>

在
$$(0, -\frac{1}{a})$$
上, $f'(x) > 0$, 所以 $f(x)$ 在 $(0, -\frac{1}{a})$ 上单调递增,

在
$$(-\frac{1}{a},1)$$
上, $f'(x) < 0$, 所以 $f(x)$ 在 $(-\frac{1}{a},1)$ 上单调递减。

②若
$$-\frac{1}{a} \ge 1$$
,即-1 $\le a < 0$ 时, $f'(x) > 0$, $f(x)$ 在(0,1)上单调递增;

综上所述: 当 $a \ge -1$ 时,递增区间: (0,1),无递减区间;

当
$$a < -1$$
 时,递增区间: $(0, -\frac{1}{a})$,递减区间 $(-\frac{1}{a}, 1)$.