函数的性质进一步研究第12课时学习指南

【学习目标】

- 1. 进一步掌握利用导数求含参函数单调性;
- 2. 进一步解决掌握不同类型导函数的处理方法;
- 3. 进一步明确含参函数求单调性分类讨论的依据及如何确定分类标准、如何展开分类讨论以及讨论后的整合问题,培养同学们的转化与化归的数学思想。

【学法指导】

进步一了解函数的单调性和导数的关系;

结合函数图象(几何直观)探讨归纳函数的单调性与导函数正负之间的关系,体会数形结合思想,一般地,在区间(*a,b*)内函数的单调性与导数有如下关系:

导数	函数的单调性		
f'(x)>0	单调递增		
f'(x)<0	单调递减		
f(x)=0	常函数		

【学习任务单】

导函数不一定存在零点,如何处理?

例: (1) 求函数 $f(x) = e^x - ax - 2$, $a \in \mathbb{R}$ 的单调性.

(2) 当 $x \in (0,1)$, 求函数 $f(x) = e^x - ax - 2$, $a \in \mathbb{R}$ 的单调性.

(1)【解析】 f(x) 的定义域为 $(-\infty, +\infty)$, $f'(x) = e^x - a$, 令 $f'(x) = e^x - a = 0$

(1)当 $a \le 0$ 时,f'(x) > 0,f(x)在 $(-\infty, +\infty)$ 上是单调递增;

(2)当a > 0时,令 $f'(x) = e^x - a = 0$,得 $x = \ln a$,列表分析如下

X	$x \qquad (-\infty, \ln a)$		$(\ln a, +\infty)$	
f'(x)	_	0	+	
f(x)	↓		1	

在 $(\ln a, +\infty)$ 上, f'(x) > 0 , 所以 f(x) 在 $(\ln a, +\infty)$ 上单调递增,

在 $(-\infty, \ln a)$ 上, f'(x) < 0 , 所以 f(x) 在 $(-\infty, \ln a)$ 上单调递减。

综上所述: 当 $a \le 0$ 时, 递增区间: $(-\infty, +\infty)$, 无递减区间;

当a > 0时, 递增区间: $(\ln a, +\infty)$, 递减区间; $(-\infty, \ln a)$ 。

小结: 含参函数单调性讨论的的依据: 导函数是否存在零点。

- (2)【解析】 f(x) 的定义域为(0,1), $f'(x) = e^x a$,
- (1)当 $a \le 0$ 时,f'(x) > 0,f(x)在(0,1)上是单调递增;
- (2)当a > 0时,令 $f'(x) = e^x a = 0$,得 $x = \ln a$,
 - ①若 ln a≤0,即 0<a≤1 时,列表分析如下:

х	(0,1)
f'(x)	+
f(x)	1

在(0,1)上, f'(x) > 0, f(x)在(0,1)上是单调递增;

②若 0<ln a<1,即 1<a<e 时,列表分析如下:

х	(0,ln a)	ln a	(ln <i>a</i> ,1)	
f'(x)	-	0	+	
f(x)	<u></u>	极大值	↑	

在 $(\ln a, 1)$ 上, f'(x) > 0, 所以 f(x) 在 $(\ln a, +\infty)$ 上单调递增,

在 $(0, \ln a)$ 上,f'(x) < 0,所以f(x)在 $(-\infty, \ln a)$ 上单调递减。

③若 $\ln a \ge 1$,即 $a \ge e$ 时,列表分析如下:

x	(0,1)	
$f'(\mathbf{x})$	-	
f(x)	\downarrow	

在(0,1)上, f'(x) < 0 ,所以 f(x) 在(0,1)上单调递减。

综上所述:

当 $a \le 1$ 时,递增区间: (0,1),无递减区间;

当 1<a<e 时, 递增区间: (ln a,1), 递减区间: (0,ln a);

当 a≥e 时,无递增区间,递减区间: (0,1)。

小结: 含参函数单调性讨论的的依据:

- (1) 导函数是否存在零点。
- (2) 零点是否在给定区间内。

例: 已知函数 $f(x) = (x-2)e^x - \frac{1}{2}a(x^2-2x)$, 其中 $a \in \mathbb{R}$; 讨论 f(x) 的单调性;

解: 定义域: $(-\infty, +\infty)$, $f'(x)=(x-1)e^x-a(x-1)=(x-1)(e^x-a)$. \diamondsuit f'(x)=0

(1) 当 a≤0 时,令 f'(x)=0,解得 x=1,列表分析如下:

х	(-∞,1)	1	$(1,+\infty)$
f'(x)		0	+
f(x)	\downarrow	极小值	↑

在(- ∞ ,1)上, f'(x)<0, f(x)单调递减;

在 $(1,+\infty)$ 上, f'(x)>0, f(x)单调递增.

- (2) 当a > 0时,令f'(x)=0,解得x = 1或 $x=\ln a$.
 - ①若 ln a<1 即 0<a<e 时,列表分析如下:

X	$(-\infty, \ln a)$	ln a	$(\ln a, 1)$	1	$(1,+\infty)$
f'(x)	+	0		0	+
f(x)	↑	极大值	\downarrow	极小值	↑

在 $(\ln a,1)$ 上,f'(x)<0,f(x)单调递减;

在($-\infty$, $\ln a$)与(1,+ ∞)上,f'(x)>0,f(x)单调递增.

- ②若 $\ln a = 1$ 即 a = e 时, $f'(x) \ge 0$ 恒成立,所以 f(x)在($-\infty$, $+\infty$)上单调递增.
- ③若 ln a>1 即 a>e 时,列表分析如下:

\boldsymbol{x}	$(-\infty,1)$	1	$(1, \ln a)$	ln a	$(\ln a, +\infty)$
f'(x)	+	0		0	+
f(x)	↑	极大值	\downarrow	极小值	↑

在 $(1, \ln a)$ 上,f'(x)<0,f(x)单调递减;

在(- ∞ ,1)与(ln a,+ ∞)上, f'(x)>0, f(x)单调递增.

综上所述

当 $a \le 0$ 时,增区间: $(1,+\infty)$,减区间: $(-\infty,1)$;

当 0 < a < e 时,增区间: $(-\infty, \ln a)$, $(1, +\infty)$,减区间: $(\ln a, 1)$;

当 a=e 时,增区间: $(-\infty,+\infty)$,减区间: 无;

当 a > e 时,增区间: $(-\infty,1)$ 与($\ln a,+\infty$),减区间: $(1, \ln a)$ 。

小结: 含参函数单调性讨论的的依据:

- (1) 导函数是否存在零点。
- (2) 零点大小关系。

归纳小结

- 1. 含参函数单调性讨论的依据:
- (1) 导函数是否存在零点;
- (2) 零点是否在定义域内;
- (3) 零点的大小关系。
- 2. 分类结论要整合;
- 3. 不重不漏。