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Deep Learning for Speech Recognition: Review of
State-of-the-Arts Technologies and Prospects

Dai Lirong, Zhang Shiliang, Huang Zhiying

(National Engineering Laboratory of Speech and Language Information Processing, University of

Science and Technology of China, Hefei, 230027, China)

Abstract: In this paper, deep learning is briefly introduced. Then, a review of the research progress of
deep learning based speech recognition is presented from the following five points: Training criterions for
deep learning based acoustic models, different model architectures for deep learning based speech recogni-
tion acoustic modeling, scalable and distributed optimization methods for deep learning based acoustic
model training, speaker adaptation for deep learning based acoustic model, and deep leaning based end-to-
end speech recognition. At the end of this paper, the future possible research points of deep learning
based speech recognition are also proposed.

Key words: deep learning; deep neural network; speech recognition; speaker adaptation
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