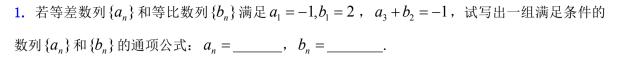
【课时作业答案】



答案: -n; 2 (答案不唯一)

2. 能说明"设数列 $\{a_n\}$ 的前 n 项和为 S_n ,对于任意的 $n \in N^*$,若 $a_{n+1} > a_n$,则 $S_{n+1} > S_n$ "为假命题的一个等差数列为 (写出数列的通项公式)。

答案: $a_n = n - 4$ (答案不唯一)

3. 设数列 $\{a_n\}$ 的前 n 项和为 S_n ,且 $\forall n \in \mathbb{N}^*$, $a_{n+1} > a_n$, $a_n > a_n$, 请写出一个满足条件的数列 $\{a_n\}$ 的通项公式 $a_n =$ ______.

答案: $n-6(n \in \mathbb{N}^*)$ (答案不唯一)

4. 已知等差数列 $\{a_n\}$ 的前n项和为 S_n ,能够说明"若数列 $\{a_n\}$ 是递减数列,则数列 $\{S_n\}$ 是递减数列"是假命题的数列 $\{a_n\}$ 的一个通项公式为_____.

答案: 满足 $a_1, a_2 > 0, d < 0$ (答案不唯一)

5. 2018年国际象棋奥林匹克团体赛中国男队、女队同时夺冠. 国际象棋中骑士的移动规则是沿着 3×2 格或 2×3 格的对角移动. 在历史上,欧拉、泰勒、哈密尔顿等数学家研究了"骑士巡游"问题: 在8×8=64 格的黑白相间的国际象棋棋盘上移动骑士,是否可以让骑士从某方格内出发不重 复地走遍棋盘上的每一格?

图 (一)给出了骑士的一种走法,它从图上标 1 的方格内出发,依次经过标 2,3,4,5,6,…,到达标 64 的方格内,不重复地走遍棋盘上的每一格,又可从标 64 的方格内直接走回到标 1 的方格内. 如果骑士的出发点在左下角标 50 的方格内,按照上述走法,____(填"能"或"不能")走回到标 50 的方格内.

若骑士限制在图(二)中的 3×4=12 格内按规则移动,存在唯一一种给方格标数字的方式,使得骑士从左上角标 1 的方格内出发,依次不重复经过 2,3,4,5,6,…,到达右下角标 12 的方格内,分析图(二)中 A 处所标的数应为 .

35	38	27	16	29	42	55	18
26	15	36	39	54	17	30	43
37	34	13	28	41	32	19	56
14	25	40	33	20	53	44	31
63	12	21	52	1	8	57	46
24	51	64	9	60	45	2	5
11	62	49	22	7	4	47	58
50	23	10	61	48	59	6	3

图 (一)

图 (二)

答案: 能; 8

6. 已知 $\{a_n\}$ 是公比为 q 的无穷等比数列,其前 n 项和为 $\{S_n\}$,满足 $a_3=12$, . 是否存在正整数 k ,使得 $S_k>2019$??若存在,求 k 的最小值;若不存在,说明理由.

从① q = 2 , ② $q = \frac{1}{2}$, ③ q = -2 这三个条件中任选一个,补充在上面问题中并作答.

注: 如果选择多个条件分别解答,按第一个解答计分。

解法一: 选择条件①得 $a_1 = 3, q = 2.则 a_n = 3 \times 2^{n-1}$

 $S_K = \frac{3(1-2^k)}{1-2} > 2019$,解得 $2^k > 674$,所以 $k \ge 10$,最小值为10

解法二:选择条件②得 $S_K = \frac{48(1-\frac{1}{2^k})}{1-\frac{1}{2}} > 2019$,k无解。

解法三: 选择条件③得 $S_{\kappa} = \frac{3(1-(-2)^k)}{1+2} > 2019$, $k \ge 11$ 且k为奇数_,最小为 11.