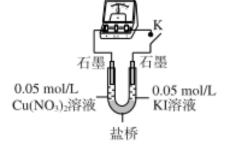
## 高三年级化学第二组校第 16 课时

## 《实验探究 5——反应规律实验探究为主》课后作业

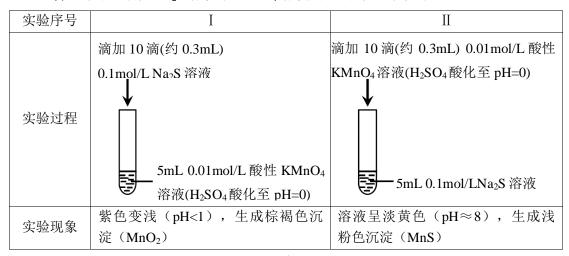
1.  $(16 \, \mathcal{G})$ 化学变化是有条件的。某小组同学探究  $\mathbf{I}^-$ 与金属阳离子的氧化还原反应,实验过程如下。


己知: 同浓度的稀溶液中氧化性:  $Ag^+ > Fe^{3+} > Cu^{2+}$ 。

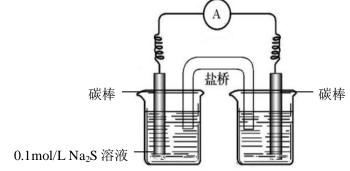
| 实验                               |    |                                               | 111 Æ                        |
|----------------------------------|----|-----------------------------------------------|------------------------------|
|                                  | 编号 | 溶液 X                                          | 现 象                          |
| 1mL 0.1mol/L<br>KI 溶液<br>1mL 溶液X | I  | $0.1 \text{ mol/L Fe}(NO_3)_3$ ,              | 溶液黄色立即加深, 30s 后溶液变为          |
|                                  |    | pH≈1                                          | 褐色,无浑浊                       |
|                                  | п  | KNO <sub>3</sub> 和 HNO <sub>3</sub> , 其中      |                              |
|                                  |    | $c(NO_3^-)=0.3 \text{mol/L}$ ,                | 1小时内溶液颜色始终保持无色               |
|                                  |    | pH≈1                                          |                              |
|                                  | ш  |                                               | 迅速变浑浊,离心分离后上层溶液为             |
|                                  |    | 0.1 mol/L AgNO <sub>3</sub>                   | 无色 (经检测无 $I_2$ ), 固体为黄色      |
|                                  |    |                                               | (AgI)                        |
|                                  | IV |                                               | 5 秒后溶液由浅蓝色变为黄色并产生            |
|                                  |    | 0.1 mol/L Cu(NO <sub>3</sub> ) <sub>2</sub> , | 浑浊,离心分离后上层溶液为黄色              |
|                                  |    |                                               | (经检测有 $I_2$ ),固体为白色( $CuI$ ) |

- (1) 根据实验 I 和 II 回答下列问题。
  - ①由"黄色立即加深"初步判断有  $I_2$ 生成,选择\_\_\_\_(填试剂)进一步证实生成了  $I_2$ 。
  - ②写出  $Fe^{3+}$ 与  $I^-$ 反应的离子方程式\_\_\_\_\_,该条件下氧化性:  $Fe^{3+}$ \_\_\_\_  $I_2$ (填">"、

"<")。


- ③实验Ⅱ的目的是 。
- (2) 实验 IV 中 Cu<sup>2+</sup>与 I<sup>-</sup>反应的离子方程式 是\_\_\_, 甲同学得出氧化性: Cu<sup>2+</sup>>I<sub>2</sub>。
- (3)乙同学认为甲同学的结论不合理,分析原因:实验III应该有  $I_2$ 生成,但却生成了 AgI 沉淀,因此推测实验 IV 中  $I_2$  的生成,与 CuI 沉淀有关,




故不能确定氧化性:  $Cu^{2+}>I_2$ ,并用右图装置进行验证。K 闭合后,较长时间发现两侧溶液均无明显变化。乙同学为了进一步判断  $Cu^{2+}$ 和  $I_2$ 的氧化性强弱,将左侧电极改为 Cu 电极,并向右侧溶液中加入\_\_\_\_\_ (填试剂),发现指针偏转,且左侧溶液颜色加深,证明该条件下氧化性:  $Cu^{2+}$ \_\_\_  $I_2$ (填">"、"<")。

- (4) 该小组同学进一步分析认为,实验III没有发生  $2Ag^++2I^- \longrightarrow 2Ag+I_2$  的原因是:  $Ag^+$ 和  $I^-$ 生成 AgI 沉淀,反应物浓度迅速降低,不利于该反应进行;请分析实验 IV 发生氧化还原反应的原因是
- (5) 小组同学得出反思实验,在反应体系中,各物质浓度对氧化还原反应是否发生都有一定影响。

2. (14分) 某小组研究  $Na_2S$  溶液与  $KMnO_4$  溶液反应,探究过程如下。



- 资料:  $i.MnO_4$ 在强酸性条件下被还原为 $Mn^{2+}$ ,在近中性条件下被还原为 $MnO_2$ 。
  - ii.单质硫可溶于硫化钠溶液,溶液呈淡黄色。
- (1) 根据实验可知, Na<sub>2</sub>S 具有\_\_\_\_\_性。
- (2) 甲同学预测实验  $I + S^2$ 被氧化成  $SO_3^2$ 。
  - ①根据实验现象,乙同学认为甲的预测不合理,理由是\_\_\_\_。
- ②乙同学取实验 I 中少量溶液进行实验,检测到有  $SO_4^{2-}$ ,得出  $S^2$  被氧化成  $SO_4^{2-}$ 的结论,丙同学否定了该结论,理由是
- ③同学们经讨论后,设计了如下实验,证实该条件下  $MnO_4$ "的确可以将  $S^{2-}$ 氧化成  $SO_4^{2-}$ 。



a.右侧烧杯中的溶液是。

b.连通后电流计指针偏转,一段时间后,\_\_\_\_(填操作和现象)。

- (3) 实验 I 的现象与资料 i 存在差异,其原因是新生成的产物( $Mn^{2+}$ )与过量的反应物  $(MnO_4^-)$  发生反应,该反应的离子方程式是\_\_\_\_\_。
- (4) 实验 II 的现象与资料也不完全相符,丁同学猜想其原因与(3) 相似,经验证猜想成立,他的实验方案是。
- (5) 反思该实验,反应物相同,而现象不同,体现了物质变化不仅与其自身的性质有关,还与\_\_\_\_\_\_因素有关。