【课时作业答案】

- 1. 解: (I) 因为 $S_0=0$, $S_1=-0.3$, $S_2=0.4$, $S_3=0.3$, $S_4=1.2$, $S_5=1.3$, 所以 $E_5=\{2,4,5\}$.
 - (II) 由集合 E_n 的定义知 $S_{k_{i+1}} > S_{k_i}$,且 k_{i+1} 是使得 $S_k > S_{k_i}$ 成立的最小的 k, 所以 $S_{k_{i+1}-1} \leqslant S_{k_i}$.

又因为 $a_{k_{i+1}} < 1$,

所以
$$S_{k_{i+1}} = S_{k_{i+1}-1} + a_{k_{i+1}}$$
 $< S_{k_i} + 1.$

所以 $S_{k_{i+1}} - S_{k_i} < 1$.

(III) 因为 $S_n > S_0$, 所以 E_n 非空.

设集合
$$E_n = \{k_1, k_2, \cdots, k_m\}$$
, 不妨设 $k_1 < k_2 < \cdots < k_m$,

则由(II)可知
$$S_{k_{i+1}}-S_{k_i}<1$$
 $(i=1,2,\cdots,m-1)$,

同理 $S_{k_1} - S_0 < 1$,且 $S_n \leq S_{k_m}$.

所以
$$S_n = (S_n - S_{k_m}) + (S_{k_m} - S_{k_{m-1}}) + \dots + (S_{k_2} - S_{k_1}) + (S_{k_1} - S_0)$$
 $< 0 \underbrace{+1 + 1 + \dots + 1 + 1}_{m \uparrow 1} = m$.

因为 $S_n > C$, 所以 E_n 的元素个数 $m \ge C + 1$.

取常数数列
$$A_n$$
: $a_i = \frac{C+1}{C+2}$ $(i=1,2,\cdots,C+1)$, 并令 $n=C+1$,

则
$$S_n = \frac{(C+1)^2}{C+2} = \frac{C^2 + 2C + 1}{C+2} > C$$
, 适合题意,

且 $E_n = \{1, 2, \dots, C+1\}$, 其元素个数恰为C+1.

综上, E_n 的元素个数的最小值为C+1.