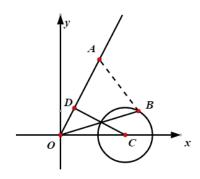
扩展提升任务答案

1. 【答案】A 解:

设
$$\vec{e} = (1,0)$$
, $\vec{b} = (x, y)$,

则
$$\vec{b}^2 - 4\vec{e} \cdot \vec{b} + 3 = 0 \Rightarrow x^2 + y^2 - 4x + 3 = 0$$

$$\Rightarrow (x-2)^2 + y^2 = 1$$



如图所示, $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$,(其中 A 为射线 OA 上动点,B 为圆 C 上动点, $\angle AOx = \frac{\pi}{3}$.)

$$\therefore |\vec{a} - \vec{b}|_{\min} = |CD| - 1 = \sqrt{3} - 1. \quad (\sharp + CD \perp OA.)$$

2. 【答案】D. 解:以AB所在直线为x轴,以AB垂直平分线为y轴,建立如图直角坐

标系

设
$$AB = 4$$
,则 $A(-2,0)$, $B(2,0)$ 由 $P_0B = \frac{1}{4}AB$ 知 $P_0(1,0)$

设
$$P(t,0)$$
, $C(x,y)$ 则 $\overrightarrow{PB} = (2-t,0)$, $\overrightarrow{PC} = (x-t,y)$

$$\overrightarrow{PB} \cdot \overrightarrow{PC} = (2-t)(x-t) = t^2 - (2+x)t + 2x$$



由 $\overrightarrow{PB} \cdot \overrightarrow{PC} \ge \overrightarrow{P_0B} \cdot \overrightarrow{P_0C}$ 知 $P = P_0$ 重合时,即 t = 1时 $\overrightarrow{PB} \cdot \overrightarrow{PC}$

取得最小值

所以
$$\frac{2+x}{2}$$
=1,即 x =0,此时 AC = BC ,选D.

3. 【答案】4,2√5

解:设向量 \vec{a} , \vec{b} 的夹角为 θ ,由余弦定理有,

$$|\vec{a} - \vec{b}| = \sqrt{1^2 + 2^2 - 2 \times 1 \times 2 \times \cos \theta} = \sqrt{5 - 4 \cos \theta}$$
,

$$|\vec{a} + \vec{b}| = \sqrt{1^2 + 2^2 - 2 \times 1 \times 2 \times \cos(\pi - \theta)} = \sqrt{5 + 4\cos\theta}$$
, \mathbb{M}

$$|\vec{a} + \vec{b}| + |\vec{a} - \vec{b}| = \sqrt{5 + 4\cos\theta} + \sqrt{5 - 4\cos\theta}$$

$$\diamondsuit$$
 $y = \sqrt{5 + 4\cos\theta} + \sqrt{5 - 4\cos\theta}$,则

$$y^2 = 10 + 2\sqrt{25 - 16\cos^2\theta} \in [16, 20]$$

所以
$$y_{\min} = 4$$
, $y_{\max} = 2\sqrt{5}$

即 $|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$ 的最小值是4,最大值是 $2\sqrt{5}$.

4. 【答案】√3+1

解:
$$S_{\triangle ABC} = \sqrt{3} = \frac{1}{2} |\overrightarrow{AB}| |\overrightarrow{AC}| \sin A = \frac{1}{2} |\overrightarrow{AB}| |\overrightarrow{AC}| \sin \frac{\pi}{3}$$

所以
$$|\overrightarrow{AB}||\overrightarrow{AC}|=4$$

$$\overrightarrow{AM} \cdot \overrightarrow{AN} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC}) [\overrightarrow{AB} + \frac{1}{4} (\overrightarrow{AC} - \overrightarrow{AB})]$$

$$= \frac{1}{8} (\overrightarrow{AB} + \overrightarrow{AC}) (3\overrightarrow{AB} + \overrightarrow{AC})$$

$$= \frac{1}{8} (3\overrightarrow{AB}^2 + \overrightarrow{AC}^2 + 4\overrightarrow{AB} \cdot \overrightarrow{AC})$$

$$= \frac{1}{8} (3\overrightarrow{AB}^2 + \overrightarrow{AC}^2 + 4 |\overrightarrow{AB}| \cdot |\overrightarrow{AC}| \cos \frac{\pi}{3})$$

$$= \frac{1}{8} (3\overrightarrow{AB}^2 + \overrightarrow{AC}^2 + 8)$$

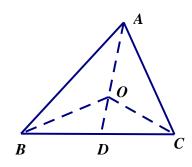
$$\geq \frac{1}{8} (2\sqrt{3\overrightarrow{AB}^2 \times \overrightarrow{AC}^2} + 8)$$

$$=\sqrt{3}+1$$

5. 【答案】
$$\frac{2}{3}$$
 解: 因为 $\frac{S_{\triangle OBC}}{S_{\triangle ABC}} = \frac{1}{3}$

所以
$$\overrightarrow{AO} = \frac{2}{3}\overrightarrow{AD} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$$

$$\overrightarrow{AD} = \frac{3}{2}\lambda \overrightarrow{AB} + \frac{3}{2}\mu \overrightarrow{AC}$$



又*D*,*B*,*C* 三点共线,所以
$$\frac{3}{2}\lambda + \frac{3}{2}\mu = 1$$
,所以 $\lambda + \mu = \frac{2}{3}$