【课时作业】

1. 为得到 $f(x) = \sin\left(2x + \frac{\pi}{3}\right)$ 的图象,可将 $y = \cos x$ 图象上所有点()

A. 先向右平移 $\frac{\pi}{6}$ 个单位长度,再将所得点的横坐标变为原来的 $\frac{1}{2}$,纵坐标不变

B. 先向右平移 $\frac{\pi}{12}$ 个单位长度,再将所得点的横坐标变为原来的 $\frac{1}{2}$,纵坐标不变

C. 先向右平移 $\frac{\pi}{6}$ 个单位长度,再将所得点的横坐标变为原来的 2 倍,纵坐标不变

D. 先向右平移 $\frac{\pi}{12}$ 个单位长度,再将所得点的横坐标变为原来的 2 倍,纵坐标不变

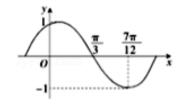
2. 把函数 $y = \cos(x + \frac{4\pi}{3})$ 的图象向右平移 $\theta(\theta > 0)$ 个单位,所得的图象关于 y 轴对称, 则 θ 的最小值为()

- A. $\frac{\pi}{6}$

- B. $\frac{\pi}{3}$ C. $\frac{2\pi}{3}$ D. $\frac{4\pi}{3}$

3.已知函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2})$ 的

部分图象如图,则 $f(\frac{\pi}{8})$ 的值为()



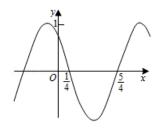
- A. $\frac{\sqrt{6} \sqrt{2}}{4}$ B. $\frac{\sqrt{6} + \sqrt{2}}{4}$ C. $\frac{\sqrt{3} + \sqrt{2}}{4}$ D.

4. 已知函数 $f(x) = \sin(2\omega x + \varphi)(\omega > 0$, $0 \le \varphi \le \frac{\pi}{2}$) 图象的相邻两条对称轴之间的距离为 π ,

且在 $x = \frac{\pi}{3}$ 时取得最大值,若 $f(\alpha) = \frac{1}{3}$,则 $\cos(2\alpha + \frac{\pi}{3})$ 的值为(

- A. $\frac{7}{9}$ B. $-\frac{7}{9}$ C. $\frac{2}{3}$ D. $-\frac{2}{3}$

5. 函数 $f(x) = \cos(x + \varphi)$ 的部分图象如图所示,则 f(x) 的单调递减区间为(



- A. $(k\pi \frac{1}{4}, k\pi + \frac{3}{4}), k \in \mathbb{Z}$
- B. $(2k\pi \frac{1}{4}, 2k\pi + \frac{3}{4}), k \in \mathbb{Z}$
- C. $(k \frac{1}{4}, k + \frac{3}{4}), k \in \mathbb{Z}$
- D. $(2k \frac{1}{4}, 2k + \frac{3}{4}), k \in \mathbb{Z}$
- 6. 已知函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| < \pi)$ 是奇函数,且 f(x) 的最小正周期为 π ,将y = f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应 的函数为 g(x). 若 $g(\frac{\pi}{4}) = \sqrt{2}$, 则 $f(\frac{3\pi}{8}) = ($
 - A. -2
- B. $-\sqrt{2}$
- C. $\sqrt{2}$
- D. 2
- 7. 将函数 $f(x) = \sin\left(3x + \frac{\pi}{6}\right)$ 的图像向右平移 m(m>0) 个单位长度,得到函数 g(x) 的
- 图像,若g(x)为奇函数,则m的最小值为(
- A. $\frac{\pi}{0}$
- B. $\frac{2\pi}{9}$ C. $\frac{\pi}{19}$
- D. $\frac{\pi}{24}$
- 8. 己知 $f(x) = \sin(\omega x + \varphi) + \cos(\omega x + \varphi) \left(\omega > 0, 0 < |\varphi| < \frac{\pi}{2}\right)$, f(0) = 0, 且函数 f(x) 的
- 图像上的任意两条对称轴之间的距离的最小值是 $\frac{\pi}{2}$
- (1) 求 $f\left(\frac{\pi}{8}\right)$ 的值:
- (2) 将函数 y = f(x) 的图像向右平移 $\frac{\pi}{6}$ 单位后,得到函数 y = g(x) 的图像,求函数 g(x)

 $\pm x \in \left| \frac{\pi}{6}, \frac{\pi}{2} \right|$ 上的最值,并求取得最值时的 x 的值.