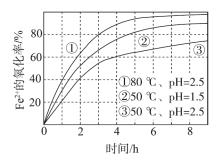
高三年级化学第二组校第 5 课时《真实问题解决 5——以 Fe 元素为主 题的概念原理元素化合物融合》课后作业

1. 在通风橱中进行下列实验:

步骤	Fe I 稀HNO3	插入Cl	u Cu Fe III 浓HNO3
现象	Fe 表面产生大量无色气 泡,液面上方变为红棕色	Fe 表面产生少量红棕 色气泡后,迅速停止	Fe、Cu 接触后,其表面均产生红棕色气泡

下列说法不正确的是

- A. I 中气体由无色变红棕色的化学方程式: $2NO + O_2 = 2NO_2$
- B. II 中的现象说明 Fe 表面形成致密的氧化层,阻止 Fe 进一步反应
- C. 对比 I、II 中现象,说明稀 HNO;的氧化性强于浓 HNO;
- D. 针对III中现象,在 Fe、Cu 之间连接电流计,可判断 Fe 是否被氧化

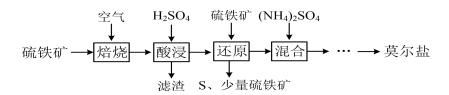

2. Fe 和 Mg 与 H₂SO₄ 反应的实验如下:

实验			\Box	Fe Mg
	Fe 稀 H ₂ SO ₄	Fe 浓 H ₂ SO ₄	Mg 浓 H ₂ SO ₄	稀 H ₂ SO ₄
现象	Fe 表面产生大 量无色气泡	Fe 表面产生气 泡后迅速停止	Mg 表面迅速 产生大量气泡	Fe 表面有大量 气泡, Mg 表面有少 量气泡

关于上述实验说法不合理的是

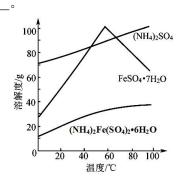
- A. I 中产生气体的原因是: Fe + 2H⁺=Fe²⁺+ H₂↑
- B. 取出 II 中的铁棒放入 CuSO4 溶液立即析出亮红色固体
- C. III中现象说明 Mg 在浓 H2SO4中没被钝化
- D. IV中现象说明 Mg 的金属性比 Fe 强
- 3. K₂FeO₄ 是优良的水处理剂,一种制备方法是将 Fe₂O₃、KNO₃、KOH 混合共熔,反应为 Fe₂O₃+ $3KNO_3 + 4KOH = 2K_2FeO_4 + 3KNO_2 + 2H_2O$ 。下列关于该反应的说法不正确的是
 - A. 铁元素被氧化, 氮元素被还原
- B. 氧化性: KNO₃>K₂FeO₄
 - C. 每生成 1 mol K₂FeO₄,转移 6 mol e⁻ D. K₂FeO₄具有氧化杀菌作用

- 4. 不同条件下,用 O_2 氧化 a mol/L $FeCl_2$ 溶液过程中所测的 实验数据如图所示。下列分析或推测合理的是
 - A. 由①、②可知, pH 越大, +2 价铁越易被氧化
 - B. 由②、③推测, 若 pH>7, +2 价铁更难被氧化
 - C. 由①、③推测, FeCl₂被 O₂氧化的反应为放热反应
 - D. 60℃、pH=2.5 时, 4 h 内 Fe²⁺的平均消耗速率 大于 0.15*a* mol/(L·h)


Fe (III)

Fe (II)

 Fe_3O_4


Pd

- **5.** Fe₃O₄中含有 Fe 、 Fe ,分别表示为 Fe (II)、Fe (III),以 Fe₃O₄/Pd 为催化材料,可实现用 H₂消除酸性废水中的致癌物 NO₂⁻,其反应过程示意图如右图所示,下列说法不正确的是
 - A. Pd 上发生的电极反应为: H₂ 2e⁻ = 2H⁺
 - B. Fe(II)与 Fe(III)的相互转化起到了传递 电子的作用
 - C. 反应过程中 NO₂⁻被 Fe(II)还原为 N₂
 - D. 用该法处理后水体的 pH 降低
- 6. 硫酸亚铁铵(NH₄)₂Fe(SO₄)₂•6H₂O 又称莫尔盐,是浅绿色晶体。用硫铁矿(主要含 FeS₂、SiO₂等)制备莫尔盐的流程如下:

已知: FeS2与 H2SO4不反应。相应物质的溶解度曲线如右下图。

- (1) FeS_2 中 S 元素的化合价为____。
- (2) 硫铁矿焙烧的主反应是: $4\text{FeS}_2+11O_2 \stackrel{\overline{a}\underline{\mathbb{A}}}{===} 2\text{Fe}_2O_3+8\text{SO}_2$,加快硫铁矿焙烧速率的措施有 (写两点即可)。
- (3) 加 H₂SO₄ 酸浸,发生反应的离子方程式为
- (4) "还原"时, Fe³⁺可通过反应 I、II被 FeS₂ 还原。
 反应 I 为: FeS₂+14Fe³⁺+8H₂O=15Fe²⁺+2SO₄²⁻+16H⁺
 反应 II 的离子方程式为: _______。
- (5)得到莫尔盐晶体的操作是:蒸发浓缩、结晶、过滤、洗涤。结晶、过滤时选择的适宜温度为 60℃,解释选择该温度的原因。
- (6) 为证明所得莫尔盐晶体中含有 Fe^{2+} 和 NH_4^+ ,实验方法是取其少量溶液于一支试管中,_____,证明含有 Fe^{2+} 和 NH_4^+ 。

- 7. 纳米 Fe₃O₄ 在磁流体、催化剂、医学等领域具有广阔的应用前景。氧化共沉淀制备 纳米 Fe₃O₄ 的方法如下:
- I. Fe^{2+} 的氧化:将 $FeSO_4$ 溶液用 NaOH 溶液调节 pH 至 a,再加入 H_2O_2 溶液,立即得到 FeO(OH)红棕色悬浊液。
- (1) ① 若用 NaOH 溶液调节 pH 过高会产生白色沉淀,该反应的离子方程式是。
 - ② 上述反应完成后,测得 a 值与 FeO(OH)产率及其生成后溶液 pH 的关系,结果如下:

a	7.0	8.0	9.0
FeO(OH)的产率	< 50%	95%	> 95%
FeO(OH)生成后的 pH	接近 4	接近 4	接近4

用离子方程式解释 FeO(OH)生成后溶液 pH 下降的原因:

- (2) 经检验: 当 a=7 时,产物中存在大量 Fe_2O_3 。对 Fe_2O_3 的产生提出两种假设:
 - i. 反应过程中溶液酸性增强,导致 FeO(OH)向 Fe₂O₃的转化;
 - ii. 溶液中存在少量 Fe²⁺,导致 FeO(OH)向 Fe₂O₃的转化。
 - ① 经分析,假设i不成立的实验依据是_____
 - ② 其他条件相同时,向 FeO(OH)浊液中加入不同浓度 Fe²⁺, 30 min 后测定物质的 组成,结果如下:

$c(\text{Fe}^{2+})/\text{mol}\cdot\text{L}^{-1}$	FeO(OH)百分含量/%	Fe ₂ O ₃ 百分含量/%
0.00	100	0
0.01	40	60
0.02	0	100

以上结果表明: 。

- ③ a = 7 和 a = 9 时, FeO(OH)产率差异很大的原因是____。
- II. Fe^{2+} 和 Fe^{3+} 共沉淀: 向 FeO(OH)红棕色悬浊液中同时加入 $FeSO_4$ 溶液和 NaOH 浓溶液进行共沉淀,再将此混合液加热回流、冷却、过滤、洗涤、干燥,得到纳米 Fe_3O_4 。
- (3) 共沉淀时的反应条件对产物纯度和产率的影响极大。
- ① 共沉淀 pH 过高时,会导致 FeSO₄溶液被快速氧化;共沉淀 pH 过低时,得到的纳米 Fe₃O₄中会混有的物质是_____。
- ② 已知 N = n[FeO(OH)]/n(Fe²⁺),其他条件一定时,测得纳米 Fe₃O₄ 的产率随 N 的变化曲线如下图所示:

经理论分析,N=2 共沉淀时纳米 Fe_3O_4 产率应最高,事实并非如此的可能原因 是____。

90-(1.75,80) (2.0,69) (2.0,69) (3.0 3.0 N=n[FeO(OH)]/n(Fe²⁺)