高三年级化学第一组校第 5 课时《以 Ag 及其化合物为载体的实验探究》

课时作业

- 1.【2012 北京卷 7】下列解释实验现象的反应方程式正确的是(
- A. 切开的金属 Na 暴露在空气中, 光亮表面逐渐变暗 2Na + O, === Na, O,
- B. 向 AgC1 悬浊液中滴加 Na₂S 溶液,白色沉淀变成黑色 2AgC1+S²⁻ = Ag₂S ↓ +2C1⁻
- $C. Na_2O_2$ 在潮湿的空气中放置一段时间,变成白色粘稠物 $2Na_2O_2 + 2CO_2 == 2Na_2CO_3 + O_2$
- D. 向 NaHCO, 溶液中加入过量的澄清石灰水, 出现白色沉淀

$$2HCO_3^- + Ca^{2+} + 2OH^- = CaCO_3 \downarrow + CO_3^{2-} + 2H_2O$$

2.【2018 北京卷 9】下列实验中的颜色变化,与氧化还原反应无关的是

	A	В	С	D
实验	NaOH 溶液滴入 FeSO ₄ 溶	石蕊溶液滴入氯	Na ₂ S 溶液滴入	热铜丝插入稀硝
	液中	水中	AgCl 浊液中	酸中
现象	产生白色沉淀, 随后变为	溶液变红, 随后	沉淀由白色逐	产生无色气体,随
	红褐色	迅速褪色	渐变为黑色	后变为红棕色

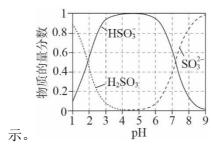
- 3.【2013 北京卷 10】实验: ① 0.1mol·L⁻¹ AgNO₃ 溶液和 0.1mol·L⁻¹ NaCl 溶液等体积混合得 到浊液 a, 过滤得到滤液 b和白色沉淀 c;
- ②向滤液 b 中滴加 0.1mol·L⁻¹ KI 溶液, 出现浑浊;
- ③向沉淀 c 中滴加 0.1mol·L⁻¹ KI 溶液,沉淀变为黄色。

下列分析不正确的是

- A. 浊液 a 中存在沉淀溶解平衡, AgCl (s) —— Ag+(aq)+ Cl-(aq)
- B. 滤液 b 中不含有 Ag+
- C. ③中颜色变化说明 AgCl 转化为 AgI
- D. 实验可以证明 AgI 比 AgCl 更难溶
- 4. 【2019 海淀期末 7】取 1 mL 0.1 mol·L-1 AgNO3 溶液进行如下实验(实验中所用试剂浓度 均为 0.1 mol·L-1):

下列说法不正确的是

- A. 实验①白色沉淀是难溶的 AgCl B. 由实验②说明 AgI 比 AgCl 更难溶
- C. 若按①③顺序实验,看不到黑色沉淀 D. 若按②①顺序实验,看不到白色沉淀

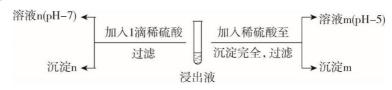

5.【2019 东城期末 11】由下列实验现象一定能得出相应结论的是

选项	A	В	С	D
装置	Na ₂ CO ₃ NaHCO ₃ 澄清石灰水 ②	浸有NaBr溶液的棉球 Cl ₂ 浸有KI淀粉溶液的棉球	2滴 NaBr 溶液 溶液 と 2滴NaI 溶液 と 2滴NaI 溶液	6 mol/L 盐酸 Na ₂ CO ₃ 粉末 Na ₂ SiO ₃ 溶液
现象	①中无明显现象, ②中产生浑浊	左边棉球变黄,右边棉球变蓝	试管中先出现淡黄色固体,后出现黄色固体	试管中液体变 浑浊
结论	热稳定性: Na ₂ CO ₃ >NaHCO ₃	氧化性: Cl ₂ >Br ₂ >I ₂	溶解度: AgCl>AgBr>AgI	非金属性: C>Si

- 6.【2020 东城期末 18】阳极泥处理后的沉渣中含 AgCl,工业上可用 Na_2SO_3 溶液作浸取剂浸出回收。某小组在实验室模拟该过程。
 - 己知:
 - i. 25℃时, 部分物质的溶解度:

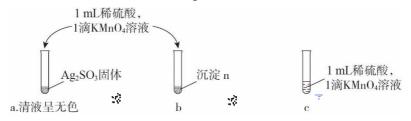
AgCl 1.9×10^{-4} g; Ag₂SO₃ 4.6×10^{-4} g; Ag₂SO₄ 0.84 g.

ii. 25℃ 时, 亚硫酸钠溶液酸化过中含 S 微粒的物质的量分数随 pH 变化如右图所



I. 浸出氯化银

取 AgCl 固体,加入 1 mol/L Na₂SO₃ 溶液作浸取剂,充分反应后过滤得到浸出液 (pH=8),该过程中发生的反应为 AgCl $+2SO_3^{2-}$ \longrightarrow $[Ag(SO_3)_2]^{3-} + Cl^-$ 。


(1) 用平衡移动原理解释 AgCl 溶解的原因是____。

II. 酸化沉银

(2)经检测,沉淀 m 为 AgCl,则溶液 m 中含 S 微粒的主要存在形式是______

- (3) 探究沉淀 n 的成分。
 - ①甲同学认为沉淀 n 一定不含 Ag₂SO₄, 其依据是_____。
 - ②乙同学认为沉淀 n 可能含 Ag₂SO₃, 进行实验验证。

- i. 本实验设计的依据是: Ag₂SO₃具有_____性。
- ii. 乙同学观察到_____, 得出结论"沉淀 n 不含 Ag₂SO₃"。
- ③丙同学从溶液 n 的成分角度再次设计实验证明沉淀 n 不含 Ag_2SO_3 。

- i. 本实验设计的依据是: 若沉淀 n 含 Ag_2SO_3 ,则溶液 n 中含 $\stackrel{^{+1}}{Ag}$ 微粒的总物质的量_____(填">"、"="或"<") Cl-物质的量。
- ii. 结合实验现象简述丙同学的推理过程: ____。

III. 浸取剂再生

(4) 溶液 m 经处理后可再用于浸出 AgCl,请简述该处理方法____。