5.6 函数 y = Asin($\omega x + \varphi$) 习题练习

- 1. 为了得到函数 $y = \cos(2x \frac{\pi}{2})$ 的图象,可以将函数 $y = \cos 2x$ 的图象(
 - A. 向左平移 $\frac{\pi}{2}$ 个单位长度
- B. 向左平移 $\frac{\pi}{4}$ 个单位长度
- C. 向右平移 $\frac{\pi}{2}$ 个单位长度
- D. 向右平移 $\frac{\pi}{4}$ 个单位长度
- 2. 将函数 $f(x) = 3\sin\left(2x + \frac{\pi}{3}\right)$ 的图像向右平移 $\frac{\pi}{2}$ 个单位长度,所得图像对应的函数 ().
- A. 在区间 $\left[\frac{\pi}{12}, \frac{7\pi}{12}\right]$ 上单调递减 B. 在区间 $\left[\frac{\pi}{12}, \frac{7\pi}{12}\right]$ 上单调递增
- C. 在区间 $\left[-\frac{\pi}{6}, \frac{\pi}{3}\right]$ 上单调递减 D. 在区间 $\left[-\frac{\pi}{6}, \frac{\pi}{3}\right]$ 上单调递增
- 3. 下列函数中,最小正周期为π且图像关于原点对称的函数是().
- A. $y = \cos\left(2x + \frac{\pi}{2}\right)$ B. $y = \sin\left(2x + \frac{\pi}{2}\right)$
- C. $y = \sin 2x + \cos 2x$ D. $y = \sin x + \cos x$
- 4. 如果函数 $f(x) = 3\sin(2x + \varphi)$ 的图象关于点 $(\frac{\pi}{3}, 0)$ 成中心对称 $(|\varphi| < \frac{\pi}{2})$, 那么函数

f(x)的一条对称轴是 (

- A. $x = -\frac{\pi}{6}$ B. $x = \frac{\pi}{12}$ C. $x = \frac{\pi}{6}$ D. $x = \frac{\pi}{3}$

- 5. 将函数 $y = \sqrt{3}\cos x + \sin x (x \in R)$ 的图象向左平移 m(m > 0) 个长度单位后, 所得到的 图象关于 y 轴对称,则m 的最小值是()
- A. $\frac{\pi}{12}$

- B. $\frac{\pi}{6}$ C. $\frac{\pi}{3}$ D. $\frac{5\pi}{6}$
- 6. 同时具有性质: "①最小正周期是 π ; ②图象关于直线 $x = \frac{\pi}{3}$ 对称; ③在区间 $\left| \frac{5\pi}{6}, \pi \right|$ 上

是单调递增函数"的一个函数可以是(

- A. $y = \cos(\frac{x}{2} + \frac{\pi}{6})$
- $B. \quad y = \sin(2x + \frac{5\pi}{6})$
- C. $y = \cos(2x \frac{\pi}{3})$

D. $y = \sin(2x - \frac{\pi}{6})$

7. 已知函数 $f(x) = A\sin(\omega x + \varphi)$ (A, ω , φ 均为正的常数的最小正周期为 π , 当 $x = \frac{2\pi}{2}$

时,函数f(x)取得最小值,则下列结论正确的是().

A.
$$f(2) < f(-2) < f(0)$$

B.
$$f(0) < f(2) < f(-2)$$

C.
$$f(-2) < f(0) < f(2)$$

D.
$$f(2) < f(0) < f(-2)$$

8. 将函数 $y = \sin(2x + \varphi)$ 的图象沿 x 轴向左平移 $\frac{\pi}{8}$ 个单位后,得到一个偶函数的图象,则 φ 的一个可能取值为(

- (A) $\frac{3\pi}{4}$ (B) $\frac{\pi}{4}$
- (C) 0 (D) $-\frac{\pi}{4}$

9. 给出下列命题:

- ①函数 $f(x) = \sin(\frac{\pi}{2} + 2x)$ 是偶函数;
- ②函数 $f(x) = \tan 2x$ 在 $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ 上单调递增;
- ③直线 $x = \frac{\pi}{8}$ 是函数 $f(x) = \sin(2x + \frac{\pi}{4})$ 图象的一条对称轴;
- ④将函数 $f(x) = \cos(2x \frac{\pi}{3})$ 的图象向左平移 $\frac{\pi}{3}$ 单位,得到函数 $y = \cos 2x$ 的图象.

10. 设 y = f(t) 是某港口水的深度 y (米) 关于时间 t (时) 的函数, 其中 $0 \le t \le 24$.下表 是该港口某一天从 0 时至 24 时记录的时间 t 与水深 v 的关系表:

ſ	t 0 3 6 9 12 15 18 21									
	Ī	0	3	6	9	12	15	18	21	24
	у	5	7.5	5	2.5	5	7.5	5	2.5	5

经长期观察,函数 y = f(t) 的图象可以近似地看成函数 $y = k + A\sin(\omega t + \varphi)$ 的图象.下

面的函数中,最能近似表示表中数据间对应关系的函数是(

A.
$$y = 5 + \frac{5}{2}\sin\frac{\pi}{12}t, t \in [0, 24]$$

A.
$$y = 5 + \frac{5}{2}\sin\frac{\pi}{12}t$$
, $t \in [0, 24]$ B. $y = 5 + \frac{5}{2}\sin(\frac{\pi}{12}t + \frac{\pi}{2})$, $t \in [0, 24]$

$$C. \quad y = 5 + \frac{5}{2}\sin\frac{\pi}{6}t, t \in [0, 24]$$

C.
$$y = 5 + \frac{5}{2}\sin\frac{\pi}{6}t$$
, $t \in [0, 24]$ D. $y = 5 + \frac{5}{2}\sin(\frac{\pi}{6}t + \pi)$, $t \in [0, 24]$